Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Biol Macromol ; 229: 413-421, 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2165363

ABSTRACT

Fucoidan is a highly sulfated polysaccharide with a wide range of bioactivities, including anti-pathogenic activity. However, the relationship between structure and activity of fucoidan in inhibiting pathogen infections remains unclear. Here, different-molecular-weight fucoidans were prepared by photocatalytic degradation followed by membrane ultrafiltration, and their chemical structures and anti-pathogenic microbiota activity were compared. Results showed that photocatalytic degradation could effectively degrade fucoidan while its structure block and sulfate groups were not destroyed obviously. Fucoidan (90.8 kDa) of 5 mg/mL could inhibit the growth of S. aureus, S. typhimurium and E. coli, but its degradation products, Dfuc1 (19.2 kDa) and Dfuc2 (5.5 kDa), demonstrated lower inhibitory effect. In addition, compared to Dfuc1 and Dfuc2, fucoidan showed stronger capability to prevent the adhesion of S. aureus, L. monocytogenes, V. parahaemolyticus and S. typhimurium to HT-29 cells. Moreover, the inhibitory effect against SARS-CoV-2 and the binding activity to S protein were also positively correlated to molecular weight. These results indicate that natural fucoidan with higher molecular weight are more effective to inhibit these pathogenic bacteria and SARS-CoV-2, providing a better understanding of the relationship between structure and activity of fucoidan against pathogenic microbiota.


Subject(s)
COVID-19 , Laminaria , Humans , Laminaria/chemistry , SARS-CoV-2 , Molecular Weight , Escherichia coli , Staphylococcus aureus , Polysaccharides/chemistry , Bacteria , Sulfates/metabolism
2.
Foods ; 11(18)2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2043645

ABSTRACT

Sulfate polysaccharides, such as heparin sulfate, have been found to have inhibitory activity against SARS-CoV-2. An abalone polysaccharide, AGSP, was deeply sulfate modified using the chlorosulfonic acid/pyridine method, yielding S-AGSP. AGSP and S-AGSP inhibitions of SARS-CoV-2 infection of Vero E6 cells were tested in vitro. The interference of AGSP or S-AGSP on the binding interaction between the SARS-CoV-2 spike protein and angiotensin-converting enzyme was tested using a biolayer interferometry assay. Results showed that S-AGSP, above a concentration of 1.87 µg/mL, significantly inhibited SARS-CoV-2 infection of Vero E6 cells. Compared with AGSP, S-AGSP obviously weakened the affinity between the SARS-CoV-2 spike protein and ACE2. The polysaccharide's sulfate content played a vital role in influencing the binding affinity of spike protein to ACE2. Therefore, S-AGSP has potential as a COVID-19 competitive inhibitor as well as a candidate to be repurposed as a prophylactic COVID-19 therapeutic.

3.
Carbohydr Polym ; 280: 119006, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1588175

ABSTRACT

Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta) is an edible seaweed attracting great attention for its expansion of farming scale and increasing consumption in these years. In the present study, a sulfated polysaccharide (CLSP-2) was isolated and separated from C. lentillifera, and its chemical structure was elucidated by a series of chemical and spectroscopic methods. Among these methods, mild acid hydrolysis and photocatalytic degradation were applied to release mono- and oligo-saccharide fragments which were further identified by HPLC-MSn analysis, affording the information of the sugar sequences and the sulfate substitution in CLSP-2. Results indicated that the backbone of CLSP-2 was constructed of →6)-ß-Manp-(1→ with sulfated branches at C2, which were comprised of prevalent →3)-ß-Galp4S-(1→, →3)-ß-Galp2,4S-(1→, and minor Xyl. In addition, the virus neutralization assay revealed that CLSP-2 could effectively protect HeLa cells against SARS-CoV-2 infection with an IC50 of 48.48 µg/mL. Hence, the present study suggests CLSP-2 as a promising agent against SARS-CoV-2.


Subject(s)
COVID-19/virology , Caulerpa/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid/methods , HeLa Cells , Humans , Hydrolysis , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Molecular Weight , Polysaccharides/analysis , SARS-CoV-2 , Seaweed/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Sulfates/chemistry
4.
Food Funct ; 11(9): 7415-7420, 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-786676

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world at an unprecedented rate. In the present study, 4 marine sulfated polysaccharides were screened for their inhibitory activity against SARS-CoV-2, including sea cucumber sulfated polysaccharide (SCSP), fucoidan from brown algae, iota-carrageenan from red algae, and chondroitin sulfate C from sharks (CS). Of them, SCSP, fucoidan, and carrageenan showed significant antiviral activities at concentrations of 3.90-500 µg mL-1. SCSP exhibited the strongest inhibitory activity with IC50 of 9.10 µg mL-1. Furthermore, a test using pseudotype virus with S glycoprotein confirmed that SCSP could bind to the S glycoprotein to prevent SARS-CoV-2 host cell entry. The three antiviral polysaccharides could be employed to treat and prevent COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Phaeophyta/chemistry , Polysaccharides/pharmacology , Rhodophyta/chemistry , Sea Cucumbers/chemistry , Animals , Antiviral Agents/chemistry , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , Polysaccharides/chemistry , SARS-CoV-2 , Sharks , Sulfates/chemistry , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL